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On the Limits and

Extensions of the

Definition of Scale

Ecologists’ increased interest in
issues of scale and scaling is clearly
illustrated by the terminological
confusion targeted by a recent ESA
Bulletin contribution (Jenerette and
Wu 2000). The prime stimulus for
us to respond here to the defini-
tion(s) of scale is that their sugges-
tion for “recognizing . . . multiple
meanings” is partially misleading, as
a rigorous scientific attempt to clarify

the reasons for and the possible so-
lutions to the confusion. The poten-
tial for misinterpretation is always
high when the same word means
many things, particularly when those
things are directly contradictory, as
in cartographic scale, ecological
scale, and geographic scale.

We strongly believe that the com-
plementarity of two sizes, that of the
observations and that of the study
area, cannot be well expressed by
one term, such as scale. It is impor-
tant to note that, in this context, we
strictly discriminate the size of ob-
servations (such as the sampling unit)
from the size of the ecologically
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meaningful entities (e.g., a bird, a
tree, or other agents), as well as the
size of the study area, from the size
of the area over which those eco-
logical entities exhibit relevant spa-
tial characteristics. The former ele-
ments of these two pairs character-
ize the data; the latter ones charac-
terize processes about which we
would like to make inferences. There-
fore, we suggest that operative terms
must be used for: (1) the character-
ization of the size and shape of the
observation, (2) the size and shape
of the study area, (3) the character-
ization of agents, and (4) the process
area (Fig. 1). The first pair (1 and 2)
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provide the technical characteristics;
the second pair (3 and 4) provide
the context. Finally, the conceptual
linkages between the pairs should
be clearly and critically evaluated.
Hence, instead of one expression of
spatial property (such as scale), at
least four separate characteristics
should be reported in every study, as
well as a discussion about their re-
lationships, in order to avoid contra-
dictory conclusions due to incom-
patible observations and/or context.

It is possible that geographers are
as much responsible for the confusion
(e.g., Tobler [1988], which practi-
cally equates cartographic scale and
operational resolution) as in some
other related disciplines that have
generated their own terminology, such
as remote sensing (Strahler et al.
1986), geostatistics (Olea 1990), and
landscape ecology (Forman 1995).

The classical cartographic ap-
proach to scaling is usually dis-
cussed under generalization. Work
on this topic (i.e., McMaster 1989)
contradicts the assertion that “once
a map is entered into a GIS, alter-
ations of cartographic scale are
trivial” (Jenerette and Wu 2000). Al-
though the precision of data repre-
sentation in GIS is limited only by

computer memory, the accuracy re-
duction caused by errors associated
with data transformations (such as
resampling, for example) and their
propagation makes this a worrisome
statement (Heuvelink and Goodchild
1998). Rapid advances of geographi-
cal information systems exposed
the shortcomings of the tradition of
Sinton (see Chrisman 1989), which
views data models in a strictly three-
dimensional Cartesian scheme along
the axes of space, time, and attributes.
A conceptual model and its data rep-
resentation cannot be well described
as one point in this framework.

Although GIS software is one of
the core modern black boxes of spa-
tial data processing, remote sensing
is one of the major data sources for
landscape environmental studies. For
remotely sensed data, resolution is
the standard scale-related term, a
function of both the spatial area and
the value of an observation. Its de-
pendence on value has been largely
left by the wayside; current practice
is to refer to a nominal resolution as
the area represented by a pixel. The
relationship of the pixel observation
to the size of “meaningful entities”
was emphasized by Strahler et al.
(1986) in their taxonomy of H-resolu-

tion (cases in which pixel observa-
tions represent smaller areas than
the size of meaningful entities) and
L-resolution (cases in which pixel
observations are made over larger
areas than the size of meaningful
entities). Recently, entire volumes
have been devoted to the impact of
modern remote sensing technologies
on scaling studies (Goodchild and
Quattrochi 1997, van Gardingen et al.
1997), demonstrating the diversity of
concepts related to scale, but falling
short of defining an integrated ter-
minology. In the absence of this in-
tegrated terminology, clear specifica-
tions of spatial aspects of phenomena,
their model representation and ob-
servations, are needed. This informa-
tion can be considered metadata or
metainformation (Beard, in press),
which is helpful for reducing uncer-
tainty in the use of spatial data.

In geostatistics, a tool increasingly
used by ecologists, scale-related ter-
minology (support, lag, range, regu-
larization) is clear (Olea 1990). How-
ever, these geostatistical terms refer
only to the observations and the sta-
tistical assumptions of geostatistical
(stochastic) models, not to the spatial
characteristics of processes or phe-
nomena being studied. Geostatistics,
therefore, provides useful terms for
only two of the four spatial scale
characteristics previously listed.

A detailed survey of the concepts
and vocabulary of scale in landscape
ecology (Withers and Meentemeyer
1999) recently summarized the is-
sues by research foci. Although their
study attempted to harmonize the
duality of “grain size and extent”
with “minimum sampling unit and
(broad vs. fine) scale,” the dominant
usage in the landscape ecological
literature is to define scale by grain
and extent (Turner et al. 1989,
Gustafson 1998, Jenerette and Wu
2000). We propose that grain (size)
and extent, and their reference to ei-
ther observation or context, should be
used as separate scale characteristics.

The potential problems related to
the inequality of what we measure
and what we infer about, enhanced
by computerized data representation,
gets exposure in some ecological dis-

Fig. 1. Relationships between observational and ecological characteristics re-
lated to “scale.” Assuming that the size of the study area is 10 x 10 km, it would be
imaged by 100 1000 x 1000 m (e.g., NOAA-AVHRR) pixels, approximately 10,000
30 x 30 m (e.g., Landsat TM) pixels, and approximately 100,000,000 1 x 1 m (e.g.,
IKONOS) pixels. The corresponding process-area and agents/objects that we would
want to observe are trees, forest stands, and ecoregions/landscapes. Clearly,
there should be a reasonably good match between these two sets of parameters. For
example, deer habitat should not be mapped at 1000-m resolution, nor should
biomes be monitored at 1-m resolution, because the discrepancy between the
observation resolution and the ecological entities and processes comes at a very
high price in terms of uncertainty.
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cussions explicitly referring to scal-
ing landscape characteristics (Levin
1992, Li and Reynolds 1995). How-
ever, the everyday practice of eco-
logical studies seems to ignore it al-
most completely. For example, a re-
cent survey of more than 200 pro-
ductivity–richness research papers
(Wade et al. 1999) found that close
to 50% of them gave no precise re-
port on one or more of the spatial
characteristics listed above.

We agree that science, and there-
fore its terminology, is dynamic
(Jenerette and Wu 2000). We also be-
lieve that clear terminology and clear
definitions are necessary requirements
for scientific progress. The single nu-
merical descriptor known as carto-
graphic scale (the ratio of map dis-
tance over real distance) expresses
only part of the information that
ecologists and other scientists deal-
ing with spatial data need to com-
municate. We would like to encour-
age ecologists to include all relevant
technical, contextual, and conceptual
pieces of information, and journal
editors to demand it, in scientific
publications.
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Where the Ocean

Meets the Sky . . .

. . . you get air deposition. Tech-
nically, air deposition happens when
the sky—or the pollution in it—
comes down to the ocean (or conti-
nent), but Rod Stewart had the right
idea. Air and water do meet, and not
only in poetry and old Irish song
lyrics. Air pollution is often a sig-
nificant source of water quality prob-
lems. Furthermore, ecologists have a


